Mass reduction method for topology optimisation of a Ti6Al4V part for additive manufacturing

Author:

Erőss László Dániel1ORCID,Markovits Tamás1ORCID

Affiliation:

1. Department of Automotive Technologies, Faculty of Transportation Engineering and Vehicle Engineering , Budapest University of Technology and Economics , Műegyetem rkp. 3 , , Budapest , Hungary

Abstract

Abstract Additive manufacturing and topology optimization provide new possibilities to produce complex parts. They can be used separately but with joint applications as a mutually reinforcing solution in component development tasks. The results obtained using the design software can be refined even further depending on the specific goal set. This paper deals with mass reduction with stiffness-based topology optimization of a structural component. The effect of different design spaces, load cases, and design parameters were examined. Then, the new part was validated with FEA simulation. After the validation, the part was prepared for 3D metal printing. Based on the research results, we present a methodology that can be used as a solution considering the software’s limitations and the development of the specific component. Applying the methodology developed in the research makes it possible to achieve mass minimization on other parts with a similar method.

Publisher

Stowarzyszenie Menedzerow Jakosci i Produkcji

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3