Application of Simulation Technique for Improving Plant Layout in Ceramic Factory

Author:

Kasemset Chompoonoot1ORCID,Opassuwan Takron1ORCID,Tangsittikhun Thanakit1,Chaiyajina Nititada1

Affiliation:

1. 1 Department of Industrial Engineering, Faculty of Engineering , Chiang Mai University , 239 Su Thep, Mueang, Chiang Mai, 50200 , Thailand

Abstract

Abstract This study aims to design and improve the plant layout of a ceramic factory by adopting Systematic Layout Planning (SLP) and the simulation technique. A ceramic company in northern Thailand is selected as a case study. Three ceramic products including roof tiles, wall tiles and dishware are studied due to their highest production volume. Through the SLP approach, information regarding the number of departments and machines, the area of the plant, the frequency of movement and the distance between each department is collected for the analysis of the relationship between departments. Two plant layout designs are then proposed; the first one is derived from the Computerized Relationship Layout Planning algorithm (CORELAP), and the second one is the process layout. For selecting the most appropriate layout design, five criteria are considered including total distance, the average total process time of each unit produced, ease of movement, material flow and safety. To determine the distance and the average total process time per unit, Distance-Based Scoring and simulation techniques are conducted while the ease of movement, material flow and safety are rated based on whether the company satisfies each criterion. Employing the weight scoring technique, the results report that the CORELAP layout is the most suitable for further implementation due to its highest weighted score equal to 2.536 while the process layout receives 2.386. Implementing the CORELAP layout can reduce the total distance by 16.76% while the average total process time per unit of the CORELAP layout is not significantly different at the significance level of 0.05 as compared to the existing layout.

Publisher

Stowarzyszenie Menedzerow Jakosci i Produkcji

Subject

Management of Technology and Innovation,Industrial and Manufacturing Engineering,Safety, Risk, Reliability and Quality,Management Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3