Investigation of the effects of machining parameters on cutting conditions during orthogonal turning of austenite stainless steel

Author:

Kónya Gábor1ORCID,Takács János2ORCID,Miskolczi István1ORCID,Kovács Zsolt F.1ORCID

Affiliation:

1. GAMF Faculty of Engineering and Computer Science, Department of Innovative Vehicles and Materials , John von Neumann University , Izsáki út 10., H-6000 Kecskemét , Hungary

2. Faculty of Transportation Engineering and Vehicle Engineering, Department of Automotive Technologies , Budapest University of Technology and Economics , Műegyetem rkp. 3., H-1111 Budapest , Hungary

Abstract

Abstract The 1.4306 austenite stainless steel has been prominently utilized as a material in the automotive and aerospace industry. Considerable interest has been garnered in the machinability of stainless steel owing to its high strength and poor thermal conductivity. The aim of this study is to ascertain the influential cutting parameters, specifically the cutting speed and feed rate, on cut-ting forces, cutting temperature, and chip evaluation. Thus, austenite stainless steel was subjected to free-cutting using a carbide recessing tool under dry conditions. The principle of measuring cutting temperature, a complex procedure due to varying thermal homogeneity, was elucidated. For the turning experiments in question, the standard Taguchi orthogonal array L9 (32), featuring two factors and three levels, was employed. The experimental results were analyzed using MiniTab 17 software. The findings reveal a substantial effect of feed rate on cutting force, cutting temperature, and chip evaluation. The highest cutting force and cutting temperature were observed at a feed rate of 0.15 mm/rev. Conversely, the cutting force was minimized at a cutting speed of 100 m/min, indicating potential for increasing the cutting speed. The augmentation of feed rate led to chip compression and discoloration, attributed to elevated cutting force and a larger chip cross-section that efficiently dissipates heat from the cutting zone.

Publisher

Stowarzyszenie Menedzerow Jakosci i Produkcji

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3