Electrical properties for cold sprayed Nano copper oxide thin films

Author:

Muneer Roaa Mohammed1ORCID,Idzikowski Adam2ORCID,Al-Zubiedy Ali3ORCID

Affiliation:

1. 1 Kerbala Technical Institute , Al-Furat Al-Awsat Technical University , Kerbala , Iraq

2. 2 Department of Production Engineering and Safety , Czestochowa University of Technology , al. Armii Krajowej 19B, 42-200 Czestochowa , Poland

3. 3 Collage of materials engineering, Department of Polymers and Petrochemical industries , University of Babylon , Hillah , Iraq

Abstract

AbstractThis work is a Copper oxide (CuO) thin films were effectively produced using cold spray technique. The process take place in an inert gas (helium) without using catalyst. Nano CuO was deposited on a glass slide, using helium as carrier gas heated to 100, 200, 300, and 400 °C, respectively on heated glass substrates at 300°C. The effect of structural and electrical properties was examined at each temperature for each film. AFM images show that the CuO thin film have different diameters ranging from 80 to 600 nm, and low surface roughness about 20.9 nm. The measured value of copper oxide resistivity was found to be decrease very much with the increasing temperature. All the result showed that copper oxide is suitable material for photovoltaic applications. This research is part of a larger work for the solar cells industry. Therefore, the aim of this research is to study the electrical properties of solar cells in the primary stages of manufacturing from available materials at low costs.

Publisher

Stowarzyszenie Menedzerow Jakosci i Produkcji

Subject

Management of Technology and Innovation,Industrial and Manufacturing Engineering,Safety, Risk, Reliability and Quality,Management Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Innovative Hydrometallurgy for Galvanic Sludge Sustainable Recovery;System Safety: Human - Technical Facility - Environment;2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3