Evaluation of selected properties and surface quality of cured pre-impregnated carbon-fiber fabrics after exposure to sulphuric acid

Author:

Kojnoková Tatiana1ORCID,Nový František1ORCID,Markovičová Lenka1ORCID,Harea Evghenii2ORCID

Affiliation:

1. University of Žilina , Department of Materials Engineering , Univerzitná 8215/1, 010 26 Žilina , Slovak republic

2. Tomas Bata University , Centre of Polymer Systems, tř. Tomáše Bati 5678 , 760 01 Zlín , Czech republic ; Tel.: + 421 41 513 2632

Abstract

Abstract This paper deals with changes in selected properties of composite material and surface degradation after exposure to an acidic environment. A carbon fiber-reinforced composite (CFRP) produced from prepregs was tested. The weight change, micro-hardness, and surface degradation of the CFRP composite made of cured pre-impregnated laminates were evaluated in this study. Material consisting of a DT121R epoxy resin matrix with high reactivity and high viscosity, with two reinforcing carbon fabrics layers, is characterized by a low value of tensile strength. Evaluation of changes in the material properties was performed before and after exposure to specific environmental conditions, which are achieved by using a chemical solution of 15% H2SO4 at various temperatures. Subsequently, the effect of 15% H2SO4 at various temperatures on the material properties was monitored. The specimens were immersed in the solution for up to 3 and 6 weeks at the temperatures of 23°C, 40°C, and 60°C. It was found out, that the degradation of the composite material is conditioned by the aging of the epoxy resin (matrix). Carbon fibers (reinforcement) are relatively stable. The weight change, micro-hardness, and surface quality depend on the time of exposure to acidic solution and temperature. The micro-hardness tests show a significant influence on exposure time. The biggest changes in weight change and surface quality of the CFRP composite were observed after exposure at the temperature of 60°C.

Publisher

Stowarzyszenie Menedzerow Jakosci i Produkcji

Subject

Management of Technology and Innovation,Industrial and Manufacturing Engineering,Safety, Risk, Reliability and Quality,Management Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3