Classification of traffic signal system anomalies for environment tests of autonomous vehicles

Author:

Lengyel Henrietta1,Szalay Zsolt1

Affiliation:

1. Budapest University of Technology and Economics , Hungary , 1111 Budapest Stoczek Street 6.

Abstract

Abstract In the future there will be a lot of changes and development concerning autonomous transport that will affect all participants of transport. There are still difficulties in organizing transport, but with the introduction of autonomous vehicles more challenges can be expected. Recognizing and tracking horizontal and vertical signs can cause a difficulties for drivers and, later, for autonomous systems. Environmental conditions, deformity and quality affect the perception of signals. The correct recognition results in safe travelling for everyone on the roads. Traffic signs are designed for people that is why the recognition process is harder for the machines. However, nowadays some developers try to create a traffic sign that autonomous vehicles can use. Computer identification needs further development, as it is necessary to consider cases where traffic signs are deformed or not properly placed. In the following investigation, the advantages and disadvantages of the different perception methods and their possibilities were gathered. A methodology for the classification of horizontal and vertical traffic signs anomalies that may help in designing better testing and validation environments for traffic sign recognition systems in the future was also proposed.

Publisher

Stowarzyszenie Menedzerow Jakosci i Produkcji

Subject

Management of Technology and Innovation,Industrial and Manufacturing Engineering,Safety, Risk, Reliability and Quality,Management Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3