Zinc toxicity and tolerance-related responses in Inga marginata and Allophylus edulis seedlings

Author:

Aguilar Marcos Vinícius MirandaORCID,Kuinchtner Caroline CastroORCID,Wertonge Gerâne SilvaORCID,Peixoto Thomas WinkORCID,Birck Thalía PreusslerORCID,Valsoler Daniel ViniciosORCID,Nicoloso Fernando TeixeiraORCID,Brunetto GustavoORCID,Tabaldi Luciane AlmeriORCID

Abstract

Although zinc (Zn) is a micronutrient, excessive amounts in the soil can have toxic effects on plants. Fertilizers, limestone materials, pesticides, and fungicides added with Zn have contributed to increasing the concentration of this element in agricultural soils. Accordingly, it is necessary to find Zn-tolerant plant species to be properly used in degraded soil restoration programs. Thus, the current study aims to investigate the influence of different Zn concentrations on photosynthetic variables, antioxidant activity, and growth of I. marginata and A. edulisseedlings to determine their potential to be used as phytoremediation species. The experiment was installed in a 2×5 factorial scheme, with the first factor being two species (Allophylus edulis and Inga marginata), and the second factor: five concentrations of Zn (2, 75, 150, 225, and 300 μM), with three replications per treatment. Each sampling unit consisted of a pot with five plants. Photosynthetic, morphological variables of the shoot and root systems, chlorophyll a fluorescence, photosynthetic pigments, antioxidant enzyme activity, lipid peroxidation, hydrogen peroxide concentration, and Zn accumulated in the roots and shoot were evaluated. Zn stress has activated an efficient antioxidant system, which reduced oxidative damage in the leaves of both species; consequently, it did not decrease shoot biomass production in Inga marginata and Allophylus edulis seedlings. High Zn accumulation in plant tissues and lack of negative effects on Inga marginata and Allophylus edulis shoot have suggested that these plant species are tolerant to Zn and may be indicated for Zn-polluted soil phytoremediation purposes.

Publisher

Sociedade de Investigacoes Florestais (SIF)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3