Optimization of Traffic Light Control Using Fuzzy Logic Sugeno Method

Author:

Kartikasari Ria Yuliani

Abstract

Congestion is one of the big problems around the world, especially for big cities. Intersections are the scene of congestion because the lane is the meeting point of two or more roads which has a major influence on the smooth flow of vehicles on the road network. This congestion occurs due to various factors, one of which is the statistical traffic light duration, which does not match traffic conditions. Based on this, there needs to be a development in the timing of a more adaptive green light. This study describes the design of a traffic light controller using the Sugeno method fuzzy logic. This study aims to design a green light duration calculation by applying fuzzy logic that results in adaptive traffic light duration at intersections, by entering the density of each intersection path, which is divided into 4 inputs, namely regulated lane density, opposing lane density I, and opposite lane density. II, the density of the opposite lane III, with the aim of the system being able to produce a duration that is in accordance with the current traffic situation with an output in the form of a green light duration on the regulated lane.

Publisher

Indonesian Operations Research Association

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Use of augmented output membership functions to improve control accuracy of second-order fuzzy system;Engineering Applications of Artificial Intelligence;2023-11

2. Research on a fuzzy algorithm for intelligent power-saving control of urban street lamps;Proceedings of the Institution of Civil Engineers - Smart Infrastructure and Construction;2023-10-23

3. A Research Survey on Traffic Management, Accident Detection and Emergency Notification Systems to Improve Society Health;2023 7th International Conference On Computing, Communication, Control And Automation (ICCUBEA);2023-08-18

4. Optimization of Traffic Flow Based on Periodic Fuzzy Graphs;Springer Tracts in Human-Centered Computing;2023

5. Intelligent Traffic Light Control System Using Fuzzy Logic;Advanced Technologies, Systems, and Applications VII;2022-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3