Determination of Separation Performance in CFD-DEM Simulation Using Straw Particles in A Standard Cyclone

Author:

ORHAN Nuri1,ŞAHİN Seda1,BAHADIR Mehmet1

Affiliation:

1. SELCUK UNIVERSITY

Abstract

Although flow in biological materials sometimes behaves like a continuous one, it cannot be simulated with continuity-based modeling when it comes to discontinuous flow behavior. The Discrete Element Method (DEM) in combination with Computational Fluid Dynamics (CFD) is a computational method for modeling particles in fluid flow by tracking their motion. DEM is widely used in the field of engineering, and its use in the agricultural field is increasing. This study analyzes the CFD-DEM relationship of biological material in aerodynamic systems and reviews current applications. In the article, the definition of aerodynamic systems as a basic principle, particle-fluid and particle-particle interaction forces in the system, modeling of particle motions, CFD-DEM coupling method, and analysis applications of agricultural aerodynamic systems are examined. In this study, simulation experiments were carried out at 100 g/s and 200 g/s straw feeding values at each value of 18-15-12-10-8-6-4 m/s air and straw inlet velocities. The flow near the cyclone walls caused the straw particles to be directed towards the lower exit end of the cyclone. At feed densities of 100 g/s and 200 g/s, the least particle output was obtained at a rate of 18 m/s. The highest cyclone output efficiency was obtained at feed densities of 100 g/s and 200 g/s at a velocity of 12 m/s. The compatibility of the trial simulation results with the literature showed that the CFD-DEM application is an important approach to study the behavior of particulate matter in fluids.

Publisher

Yuzuncu Yil Universitesi Tarim Bilimleri Dergisi

Subject

General Agricultural and Biological Sciences

Reference53 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3