Cell freezing and the biology of inexorability: on cryoprotectants and chemical time

Author:

Landecker HannahORCID

Abstract

AbstractWhat can’t freezing hold still? This article surveys the history of substances used to protect cells and organisms from freezing damage, known as cryoprotectants. Dimethyl sulfoxide (DMSO) has since 1959 been the most widely used of these agents in cryopreservation. Here, its evolution from pulp and paper waste byproduct to wonder drug to all-but-invisible routine element of freezing protocols is used to trace the direct arc from protection to toxicity in theories of how and why cryoprotectants work, from the 1960s to today. The power of these agents to simultaneously protect and degrade is shown to reside in manipulation of chemical time via hydrogen bonding and electron exchange, thereby reframing freezing as a highly active and transformational process. Countering long-held assumptions about cryopreservation as an operation of stasis after which the thawed entity is the same as it was before, this article details recent demonstrations of effects of cryoprotectant exposure that are nonlethal but nonetheless profoundly impactful within scientific and therapeutic practices that depend on freezing infrastructures. Understanding the operationalization of chemical time in the case of cryoprotectants is broadly relevant to other modern technologies dedicated to shifting how material things exist and persist in human historical time.

Funder

National Institutes of Health

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3