Computational thematics: comparing algorithms for clustering the genres of literary fiction

Author:

Sobchuk Oleg,Šeļa ArtjomsORCID

Abstract

AbstractWhat are the best methods of capturing thematic similarity between literary texts? Knowing the answer to this question would be useful for automatic clustering of book genres, or any other thematic grouping. This paper compares a variety of algorithms for unsupervised learning of thematic similarities between texts, which we call “computational thematics”. These algorithms belong to three steps of analysis: text pre-processing, extraction of text features, and measuring distances between the lists of features. Each of these steps includes a variety of options. We test all the possible combinations of these options. Every combination of algorithms is given a task to cluster a corpus of books belonging to four pre-tagged genres of fiction. This clustering is then validated against the “ground truth” genre labels. Such comparison of algorithms allows us to learn the best and the worst combinations for computational thematic analysis. To illustrate the difference between the best and the worst methods, we then cluster 5000 random novels from the HathiTrust corpus of fiction.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3