Author:
Li Xun,Chen Dongsheng,Xu Weipan,Chen Haohui,Li Junjun,Mo Fan
Abstract
AbstractArtificial intelligence (AI) has become frequently used in data and knowledge production in diverse domain studies. Scholars began to reflect on the plausibility of AI models that learn unexplained tacit knowledge, spawning the emerging research field, eXplainable AI (XAI). However, superior XAI approaches have yet to emerge that can explain the tacit knowledge acquired by AI models into human-understandable explicit knowledge. This paper proposes a novel eXplainable Dimensionality Reduction (XDR) framework, which aims to effectively translate the high-dimensional tacit knowledge learned by AI into explicit knowledge that is understandable to domain experts. We present a case study of recognizing the ethnic styles of village dwellings in Guangdong, China, via an AI model that can recognize the building footprints from satellite imagery. We find that the patio, size, length, direction and asymmetric shape of the village dwellings are the key to distinguish Canton, Hakka, Teochew or their mixed styles. The data-derived results, including key features, proximity relationships and geographical distribution of the styles are consistent with the findings of existing field studies. Moreover, an evidence of Hakka migration was also found in our results, complementing existing knowledge in architectural and historical geography. This proposed XDR framework can assist experts in diverse fields to further expand their domain knowledge.
Publisher
Springer Science and Business Media LLC
Subject
General Economics, Econometrics and Finance,General Psychology,General Social Sciences,General Arts and Humanities,General Business, Management and Accounting
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献