Releasing survey microdata with exact cluster locations and additional privacy safeguards

Author:

Koebe Till,Arias-Salazar Alejandra,Schmid Timo

Abstract

AbstractHousehold survey programs around the world publish fine-granular georeferenced microdata to support research on the interdependence of human livelihoods and their surrounding environment. To safeguard the respondents’ privacy, micro-level survey data is usually (pseudo)-anonymized through deletion or perturbation procedures such as obfuscating the true location of data collection. This, however, poses a challenge to emerging approaches that augment survey data with auxiliary information on a local level. Here, we propose an alternative microdata dissemination strategy that leverages the utility of the original microdata with additional privacy safeguards through synthetically generated data using generative models. We back our proposal with experiments using data from the 2011 Costa Rican census and satellite-derived auxiliary information. Our strategy reduces the respondents’ re-identification risk for any number of disclosed attributes by 60–80% even under re-identification attempts.

Publisher

Springer Science and Business Media LLC

Subject

General Economics, Econometrics and Finance,General Psychology,General Social Sciences,General Arts and Humanities,General Business, Management and Accounting

Reference68 articles.

1. Aiken E, Bellue S, Karlan D, Udry C, Blumenstock JE (2022) Machine learning and phone data can improve targeting of humanitarian aid. Nature 603:864–870. https://www.nature.com/articles/s41586-022-04484-9

2. Alfons A, Filzmoser P, Hulliger B, Kolb J-P, Kraft S, Münnich R, Templ M (2011a) Synthetic data generation of SILC data. Research Project Report WP6, D6.2. Tech. Rep., The AMELI Project. https://www.uni-trier.de/fileadmin/fb4/projekte/SurveyStatisticsNet/Ameli_Delivrables/AMELI-WP6-D6.2-240611.pdf

3. Alfons A, Kraft S, Templ M, Filzmoser P (2011b) Simulation of close-to-reality population data for household surveys with application to EU-SILC. Stat Methods Appt 20:383–407. https://doi.org/10.1007/s10260-011-0163-2

4. Alkire S, Kanagaratnam U, Suppa N (2019) The Global Multidimensional Poverty Index (MPI) 2019. OPHI MPI Methodological Note 47. Tech. Rep., Oxford Poverty and Human Development Initiative, University of Oxford. https://www.ophi.org.uk/wp-content/uploads/OPHI_MPI_MN_47_2019_vs2.pdf

5. Andrés ME, Bordenabe NE, Chatzikokolakis K, Palamidessi C (2013) Geo-indistinguishability: Differential privacy for location-based systems. In Proc. 2013 ACM SIGSAC Conf. Comput. Commun. Secur. 901–914. https://doi.org/10.1145/2508859.2516735

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3