Mobility and phone call behavior explain patterns in poverty at high-resolution across multiple settings

Author:

Steele Jessica E.ORCID,Pezzulo Carla,Albert Maximilian,Brooks Christopher J.,zu Erbach-Schoenberg Elisabeth,O’Connor Siobhán B.,Sundsøy Pål R.,Engø-Monsen KenthORCID,Nilsen Kristine,Graupe Bonita,Nyachhyon Rajesh Lal,Silpakar Pradeep,Tatem Andrew J.ORCID

Abstract

AbstractCall detail records (CDRs) from mobile phone metadata are a promising data source for mapping poverty indicators in low- and middle-income countries. These data provide information on social networks, call behavior, and mobility patterns in a population, which are correlated with measures of socioeconomic status. CDRs are passively collected and provide information with high spatial and temporal resolution. Identifying features from these data that are generalizable and able to predict poverty and wealth beyond a single context could promote broader usage of mobile data, contribute to a reduction in the cost of socioeconomic data collection and processing, as well as complement existing census and survey-based methods of poverty estimation with improved temporal resolution. This is especially important within the context of the sustainable development goals (SDGs), where poverty and related health indicators are to be reduced significantly across subnational geographies by 2030. Here we utilize measures of cell phone user behavior derived from three CDR datasets within a Bayesian modeling framework to map poverty and wealth patterns across Namibia, Nepal, and Bangladesh. We demonstrate five metrics of user mobility and call behavior that are able to explain between 50% and 65% of the variance in socioeconomic status nationally for these three countries. These key metrics prove useful in very different contexts and can be readily provided as part of an existing CDR platform or software package. This paper provides a key contribution in this regard by identifying such metrics relevant to estimating poverty. We highlight the inclusion of ancillary data and local context as an important factor in understanding model outputs when targeting poverty alleviation strategies.

Publisher

Springer Science and Business Media LLC

Subject

General Economics, Econometrics and Finance,General Psychology,General Social Sciences,General Arts and Humanities,General Business, Management and Accounting

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3