Applying large language models for automated essay scoring for non-native Japanese

Author:

Li Wenchao,Liu Haitao

Abstract

AbstractRecent advancements in artificial intelligence (AI) have led to an increased use of large language models (LLMs) for language assessment tasks such as automated essay scoring (AES), automated listening tests, and automated oral proficiency assessments. The application of LLMs for AES in the context of non-native Japanese, however, remains limited. This study explores the potential of LLM-based AES by comparing the efficiency of different models, i.e. two conventional machine training technology-based methods (Jess and JWriter), two LLMs (GPT and BERT), and one Japanese local LLM (Open-Calm large model). To conduct the evaluation, a dataset consisting of 1400 story-writing scripts authored by learners with 12 different first languages was used. Statistical analysis revealed that GPT-4 outperforms Jess and JWriter, BERT, and the Japanese language-specific trained Open-Calm large model in terms of annotation accuracy and predicting learning levels. Furthermore, by comparing 18 different models that utilize various prompts, the study emphasized the significance of prompts in achieving accurate and reliable evaluations using LLMs.

Publisher

Springer Science and Business Media LLC

Reference67 articles.

1. Attali Y, Burstein J (2006) Automated essay scoring with e-rater® V.2. J. Technol., Learn. Assess., 4

2. Barkaoui K, Hadidi A (2020) Assessing Change in English Second Language Writing Performance (1st ed.). Routledge, New York. https://doi.org/10.4324/9781003092346

3. Bentz C, Tatyana R, Koplenig A, Tanja S (2016) A comparison between morphological complexity. measures: Typological data vs. language corpora. In Proceedings of the workshop on computational linguistics for linguistic complexity (CL4LC), 142–153. Osaka, Japan: The COLING 2016 Organizing Committee

4. Bond TG, Yan Z, Heene M (2021) Applying the Rasch model: Fundamental measurement in the human sciences (4th ed). Routledge

5. Brants T (2000) Inter-annotator agreement for a German newspaper corpus. Proceedings of the Second International Conference on Language Resources and Evaluation (LREC’00), Athens, Greece, 31 May-2 June, European Language Resources Association

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3