Abstract
AbstractLanguage change is influenced by many factors, but often starts from synchronic variation, where multiple linguistic patterns or forms coexist, or where different speech communities use language in increasingly different ways. Besides regional or economic reasons, communities may form and segregate based on political alignment. The latter, referred to as political polarization, is of growing societal concern across the world. Here we map and quantify linguistic divergence across the partisan left-right divide in the United States, using social media data. We develop a general methodology to delineate (social) media users by their political preference, based on which (potentially biased) news media accounts they do and do not follow on a given platform. Our data consists of 1.5M short posts by 10k users (about 20M words) from the social media platform Twitter (now “X”). Delineating this sample involved mining the platform for the lists of followers (n = 422M) of 72 large news media accounts. We quantify divergence in topics of conversation and word frequencies, messaging sentiment, and lexical semantics of words and emoji. We find signs of linguistic divergence across all these aspects, especially in topics and themes of conversation, in line with previous research. While US American English remains largely intelligible within its large speech community, our findings point at areas where miscommunication may eventually arise given ongoing polarization and therefore potential linguistic divergence. Our flexible methodology — combining data mining, lexicostatistics, machine learning, large language models and a systematic human annotation approach — is largely language and platform agnostic. In other words, while we focus here on US political divides and US English, the same approach is applicable to other countries, languages, and social media platforms.
Publisher
Springer Science and Business Media LLC
Reference105 articles.
1. Adamic LA, Glance N (2005) The political blogosphere and the 2004 U.S. election: Divided they blog. In Proceedings of the 3rd International Workshop on Link Discovery, LinkKDD ’05. Association for Computing Machinery, pp 36–43
2. Albertson BL (2015) Dog-Whistle Politics: Multivocal Communication and Religious Appeals. Political Behavior 37(1):3–26
3. AllSides (2021) AllSides Media Bias Ratings, Version 4. Available from: https://www.allsides.com/media-bias/media-bias-ratings [Accessed 01.02.2021]
4. AllSides (2022) AllSides February 2022 February 2022 Blind Bias Survey Whitepaper. Available from: https://www.allsides.com/blind-survey/feb-2022-blind-bias-survey [Accessed 01.09.2023])
5. Alshaabi T, Adams JL, Arnold MV, Minot JR, Dewhurst DR, Reagan AJ (2021) Storywrangler: A massive exploratorium for sociolinguistic, cultural, socioeconomic, and political timelines using Twitter. Sci Adv 7(29):eabe6534
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献