Ecological footprints, carbon emissions, and energy transitions: the impact of artificial intelligence (AI)

Author:

Wang QiangORCID,Li Yuanfan,Li Rongrong

Abstract

AbstractThis study examines the multifaceted impact of artificial intelligence (AI) on environmental sustainability, specifically targeting ecological footprints, carbon emissions, and energy transitions. Utilizing panel data from 67 countries, we employ System Generalized Method of Moments (SYS-GMM) and Dynamic Panel Threshold Models (DPTM) to analyze the complex interactions between AI development and key environmental metrics. The estimated coefficients of the benchmark model show that AI significantly reduces ecological footprints and carbon emissions while promoting energy transitions, with the most substantial impact observed in energy transitions, followed by ecological footprint reduction and carbon emissions reduction. Nonlinear analysis indicates several key insights: (i) a higher proportion of the industrial sector diminishes the inhibitory effect of AI on ecological footprints and carbon emissions but enhances its positive impact on energy transitions; (ii) increased trade openness significantly amplifies AI’s ability to reduce carbon emissions and promote energy transitions; (iii) the environmental benefits of AI are more pronounced at higher levels of AI development, enhancing its ability to reduce ecological footprints and carbon emissions and promote energy transitions; (iv) as the energy transition process deepens, AI’s effectiveness in reducing ecological footprints and carbon emissions increases, while its role in promoting further energy transitions decreases. This study enriches the existing literature by providing a nuanced understanding of AI’s environmental impact and offers a robust scientific foundation for global policymakers to develop sustainable AI management frameworks.

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3