Dynamic simulation research on urban green transformation under the target of carbon emission reduction: the example of Shanghai

Author:

Shang Hua,Yin HaileiORCID

Abstract

AbstractThis paper aimed to predict the trend of carbon emissions during the green transformation process in Shanghai, with a focus on the city’s urban system structure. Green development has become an inevitable trend in urban progress, as traditional urban development has led to severe environmental problems caused by the emissions of a large amount of carbon dioxide. This study was motivated by the need for cities to actively pursue green transformation and achieve carbon peaking targets. Through a literature analysis, it was found that urban green transformation is influenced by various factors such as economy, energy, population, technology, and policy. Furthermore, carbon dioxide emissions primarily arise from fossil fuels and are regulated by carbon emission trading (CET) policies. With this knowledge, the urban system was divided, and the flow of carbon was analyzed. Using the general methodology of the IPCC, the carbon production resulting from energy consumption in Shanghai from 2014 to 2019 is calculated to construct an urban system dynamic (SD) model, which is used to predict the carbon emissions expected during the green transformation from 2020 to 2025. The key findings of the study are as follows: (1) The dynamic model of the urban green transformation system proved to be effective in predicting carbon emissions. (2) Based on the current status of green transformation in Shanghai, the city is capable of achieving its expected carbon emission peaking target by 2025. (3) The progress and timing of green transformation and carbon peaking in Shanghai vary across different scenarios, highlighting the importance of collective adjustments to identify the most appropriate path for urban green transformation. These findings provide valuable insights for cities seeking to adopt green development measures, facilitating the acceleration of their green transformation efforts and early attainment of carbon peaking targets.

Publisher

Springer Science and Business Media LLC

Subject

General Economics, Econometrics and Finance,General Psychology,General Social Sciences,General Arts and Humanities,General Business, Management and Accounting

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3