Fast Point-Feature Label Placement for Dynamic Visualizations

Author:

Mote Kevin1

Affiliation:

1. Pacific Northwest National Laboratory, Washington State University, U.S.A.

Abstract

This paper describes a fast approach to automatic point label de-confliction on interactive maps. The general Map Labeling problem is NP-hard and has been the subject of much study for decades. Computerized maps have introduced interactive zooming and panning, which has intensified the problem. Providing dynamic labels for such maps typically requires a time-consuming pre-processing phase. In the realm of visual analytics, however, the labeling of interactive maps is further complicated by the use of massive datasets laid out in arbitrary configurations, thus rendering reliance on a pre-processing phase untenable. This paper offers a method for labeling point-features on dynamic maps in real time without pre-processing. The algorithm presented is efficient, scalable, and exceptionally fast; it can label interactive charts and diagrams at speeds of multiple frames per second on maps with tens of thousands of nodes. To accomplish this, the algorithm employs a novel geometric de-confliction approach, the ‘trellis strategy,’ along with a unique label candidate cost analysis to determine the “least expensive” label configuration. The speed and scalability of this approach make it well-suited for visual analytic applications.

Publisher

SAGE Publications

Subject

Computer Vision and Pattern Recognition

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Scalable Method for Readable Tree Layouts;IEEE Transactions on Visualization and Computer Graphics;2024-02

2. Visualizing Disks and Labels with Good Visibility and Correspondence;2022 26th International Conference Information Visualisation (IV);2022-07

3. Rapid Labels: Point-Feature Labeling on GPU;IEEE Transactions on Visualization and Computer Graphics;2022-01

4. Construct boundaries and place labels for multi-class scatterplots;Journal of Visualization;2021-09-22

5. A parallel annotation placement method for dense point of interest labels using hexagonal grid;Cartography and Geographic Information Science;2020-10-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3