Multi-Scale Visual Analysis of Trauma Injury

Author:

Imielinska Celina12,Przekwas Andrzej3,Tan XG3

Affiliation:

1. Department of Biomedical Informatics, New York, NY, U.S.A.

2. Department of Computer Science, Columbia University, New York, NY, U.S.A.

3. CFD Research Corp., Huntsville, AL, U.S.A.

Abstract

We develop a multi-scale high-fidelity biomechanical and physiologically based modeling tools for trauma (ballistic/impact and blast) injury to brain, lung and spinal cord for resuscitation, treatment planning and design of personnel protection. Several approaches have been used to study blast and ballistic/impact injuries. Dummy containing pressure sensors and synthetic phantoms of human organs have been used to study bomb blast and car crashes. Large animals like pigs also have been equipped with pressure sensors exposed to blast waves. But these methods do not provide anatomically and physiologically, full optimization of body protection design and require animal sacrifice. Anatomy and medical image-based high-fidelity computational modeling can be used to analyze injury mechanisms and to optimize the design of body protection. This paper presents novel approach of coupled computational fluid dynamics and computational structures dynamics to simulate fluid (air, cerebrospinal fluid)–solid (cranium, brain tissue) interaction during ballistic/blast impact. We propose a trauma injury simulation pipeline concept staring from anatomy and medical image-based high-fidelity 3D geometric modeling, extraction of tissue morphology, generation of computational grids, multi-scale biomechanical and physiological simulations, and data visualization.

Publisher

SAGE Publications

Subject

Computer Vision and Pattern Recognition

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3