Event-Based Concepts for User-Driven Visualization

Author:

Tominski Christian1

Affiliation:

1. University of Rostock, Albert-Einstein-Strae 21, D-18059 Rostock, Germany.

Abstract

Visualization has become an increasingly important tool to support exploration and analysis of the large volumes of data we are facing today. However, interests and needs of users are still not being considered sufficiently. The goal of this work is to shift the user into the focus. To that end, we apply the concept of event-based visualization that combines event-based methodology and visualization technology. Previous approaches that make use of events are mostly specific to a particular application case, and hence, can not be applied otherwise. We introduce a novel general model of event-based visualization that comprises three fundamental stages. (1) Users are enabled to specify what their interests are. (2) During visualization, matches of these interests are sought in the data. (3) It is then possible to automatically adjust visual representations according to the detected matches. This way, it is possible to generate visual representations that better reflect what users need for their task at hand. The model's generality allows its application in many visualization contexts. We substantiate the general model with specific data-driven events that focus on relational data so prevalent in today's visualization scenarios. We show how the developed methods and concepts can be implemented in an interactive event-based visualization framework, which includes event-enhanced visualizations for temporal and spatio-temporal data.

Publisher

SAGE Publications

Subject

Computer Vision and Pattern Recognition

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Involving the Human via Interaction;Human–Computer Interaction Series;2023

2. Visualization Onboarding Grounded in Educational Theories;Visualization Psychology;2023

3. AVES: A data-driven approach for airman certification;AIAA AVIATION 2022 Forum;2022-06-20

4. Self-service analytics and the processing of hydrocarbons;Digital Chemical Engineering;2022-06

5. ConceptGraph: A Formal Model for Interpretation and Reasoning During Visual Analysis;Computer Graphics Forum;2020-02-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3