Visualizing Large-Scale Streaming Applications

Author:

De Pauw Wim1,Andrade Henrique1

Affiliation:

1. IBM T.J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY10532, USA

Abstract

Stream processing is a new and important computing paradigm. Innovative streaming applications are being developed in areas ranging from scientific applications (for example, environment monitoring), to business intelligence (for example, fraud detection and trend analysis), to financial markets (for example, algorithmic trading systems). In this paper we describe Streamsight, a new visualization tool built to examine, monitor and help understand the dynamic behavior of streaming applications. Streamsight can handle the complex, distributed and large-scale nature of stream processing applications by using hierarchical graphs, multi-perspective visualizations, and de-cluttering strategies. To address the dynamic and adaptive nature of these applications, Streamsight also provides real-time visualization as well as the capability to record and replay. All these features are used for debugging, for performance optimization, and for management of resources, including capacity planning. More than 100 developers, both inside and outside IBM, have been using Streamsight to help design and implement large-scale stream processing applications.

Publisher

SAGE Publications

Subject

Computer Vision and Pattern Recognition

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. React-bratus: Visualising React Component Hierarchies;2021 Working Conference on Software Visualization (VISSOFT);2021-09

2. Visualizing Distributed System Executions;ACM Transactions on Software Engineering and Methodology;2020-04-29

3. A reference web architecture and patterns for real-time visual analytics on large streaming data;SPIE Proceedings;2013-12-23

4. A model-based framework for building extensible, high performance stream processing middleware and programming language for IBM InfoSphere Streams;Software: Practice and Experience;2011-11-13

5. Design principles for developing stream processing applications;Software: Practice and Experience;2010-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3