Visualising the Structure of Document Search Results: A Comparison of Graph Theoretic Approaches

Author:

Cribbin Timothy1

Affiliation:

1. Department of Information Systems and Computing, Brunel University, Kingston Lane, Uxbridge, Middlesex UB8 3PH, UK.

Abstract

Previous work has shown that distance-similarity visualisation or ‘spatialisation’ can provide a potentially useful context in which to browse the results of a query search, enabling the user to adopt a simple local foraging or ‘cluster growing’ strategy to navigate through the retrieved document set. However, faithfully mapping feature-space models to visual space can be problematic owing to their inherent high dimensionality and non-linearity. Conventional linear approaches to dimension reduction tend to fail at this kind of task, sacrificing local structural in order to preserve a globally optimal mapping. In this paper the clustering performance of a recently proposed algorithm called isometric feature mapping (Isomap), which deals with non-linearity by transforming dissimilarities into geodesic distances, is compared to that of non-metric multidimensional scaling (MDS). Various graph pruning methods, for geodesic distance estimation, are also compared. Results show that Isomap is significantly better at preserving local structural detail than MDS, suggesting it is better suited to cluster growing and other semantic navigation tasks. Moreover, it is shown that applying a minimum-cost graph pruning criterion can provide a parameter-free alternative to the traditional K-neighbour method, resulting in spatial clustering that is equivalent to or better than that achieved using an optimal- K criterion.

Publisher

SAGE Publications

Subject

Computer Vision and Pattern Recognition

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The value of social media data: Integrating crowd capabilities in evidence-based policy;Government Information Quarterly;2017-12

2. Discovering latent topical structure by second-order similarity analysis;Journal of the American Society for Information Science and Technology;2011-04-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3