Affiliation:
1. Department of Information Systems and Computing, Brunel University, Kingston Lane, Uxbridge, Middlesex UB8 3PH, UK.
Abstract
Previous work has shown that distance-similarity visualisation or ‘spatialisation’ can provide a potentially useful context in which to browse the results of a query search, enabling the user to adopt a simple local foraging or ‘cluster growing’ strategy to navigate through the retrieved document set. However, faithfully mapping feature-space models to visual space can be problematic owing to their inherent high dimensionality and non-linearity. Conventional linear approaches to dimension reduction tend to fail at this kind of task, sacrificing local structural in order to preserve a globally optimal mapping. In this paper the clustering performance of a recently proposed algorithm called isometric feature mapping (Isomap), which deals with non-linearity by transforming dissimilarities into geodesic distances, is compared to that of non-metric multidimensional scaling (MDS). Various graph pruning methods, for geodesic distance estimation, are also compared. Results show that Isomap is significantly better at preserving local structural detail than MDS, suggesting it is better suited to cluster growing and other semantic navigation tasks. Moreover, it is shown that applying a minimum-cost graph pruning criterion can provide a parameter-free alternative to the traditional K-neighbour method, resulting in spatial clustering that is equivalent to or better than that achieved using an optimal- K criterion.
Subject
Computer Vision and Pattern Recognition
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献