Experimental Comparison of the Energy Absorption Performance of Traditional Lattice and Novel Lattice Filled Tubes

Author:

KOCABAŞ Gazi Başar1ORCID,CETİN Erhan2ORCID,YALCİNKAYA Senai3ORCID,ŞAHİN Yusuf4ORCID

Affiliation:

1. ISTANBUL AREL UNIVERSITY

2. HITIT UNIVERSITY

3. MARMARA UNIVERSITY

4. OSTIM TECHNICAL UNIVERSITY

Abstract

In this study, β-Ti3Au lattice structure was proposed for the first time in the literature as a filling material to increase the energy absorption performance of thin-walled tubes. In this context, the energy absorption performances of conventional lattice structure (i.e., BCC and FCC) filled thin-walled tubes and proposed novel β-Ti3Au lattice structure filled thin-walled tubes with proposed were compared experimentally. BCC hybrid, FCC hybrid and β-Ti3Au hybrid structures produced by additive manufacturing technology using PA2200 powder were crushed and evaluated by considering various crashworthiness criteria such as EA and SEA. The results showed that the β-Ti3Au hybrid structures are better crashworthiness performance than that of traditional filling BCC and FCC lattice structure filled thin-walled tubes. In particular, the β-Ti3Au hybrid structure has 18.17% and 19.39% higher EA values than BCC hybrid and FCC hybrid, respectively. These values are 16.50% and 15.66% for SEA values, respectively. As a result, the current investigation showed that the suggested β-Ti3Au lattice structures as a filler material can be a significant alternative for applications where energy absorption performance is critical.

Funder

Scientific Research Projects Governing Unit of Marmara University

Publisher

International Journal of Automotive Science and Technology

Subject

Energy Engineering and Power Technology,Transportation,Fuel Technology,Automotive Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3