Affiliation:
1. Federal Scientific Clinical Center of Medical Radiology and Oncology
2. Federal Scientific Clinical Center of Medical Radiology and Oncology; Dimitrovgrad Institute of Engineering and Technology - branch of National Research Nuclear University "MEPhI"
Abstract
In proton therapy the couches used for patient positioning and alignment can affect the uncertainty in the dose distribution from the applied proton beam. In order to limit the additional uncertainty of the proton range, it is necessary to know the determined water equivalent thickness (WET) of the couch top and carefully reflect it in the calculations of the dosimetry planning system. The method presented in this article is based on the difference in the measured depth of the proton beam detected by the multilayer ionization chamber with the beam passing through the couch top and without passing through it.
A range shifter (proton beam modifier) installed in the nozzle with the known WET for evaluating couch tops before commissioning was used in this research work. A nozzle is a proton beam delivery system consisting of quadrupole magnets, ionization chambers and an X-ray tube. CT scans were also acquired to evaluate the internal homogeneity of the test couch tops.
Several kVue couch inserts Proton one (Qfix Systems, Avondale, PA) were evaluated in this study. The results show that the inserts are largely interchangeable for this type of design and the use of the range shifter during treatment, using gantry angles with the proton beam passing through the couch top, does not affect its WET, adding a deflection of approximately 0.1 mm. It was also determined that the reproducibility of the WET determination method has a deviation less than ±0.03 mm. In conclusion, the described above method of couch top testing before commissioning in proton therapy can also be applied to other patient immobilization systems.
Publisher
Association of Medical Physicists in Russia
Reference8 articles.
1. Slater JM. Selecting the optimum particle for radiation therapy. Technology in Cancer Research & Treatment. 2016; 6(4): 35-9.
2. Киселев ВА, Демидова АМ, Маслюкова ЕА, Фомина ЕС. Оптимизация программы ежедневной гарантии качества системы протонной терапии. Медицинская физика. 2021; (1(89)): 22-23. [Kiselev VA, Demidova AM, Maslyukova EA, Fomina ES. Optimization of the daily quality assurance program of the proton therapy system. Medical Physics. 2021; 1(89): 22-3 (In Russian)].
3. Кузнецова ЕВ, Матич А, Колесников АН и др. Определение непреднамеренной ошибки в значении энергии протонного пучка для лучевой терапии. Вестник Национального исследовательского ядерного университета МИФИ. 2021; 10(3): 217-29. DOI 10.1134/S2304487X2103007X. – EDN VVOTXV.
4. Удалов ЮД, Крючко ДС, Слобина ЕЛ и др. Свидетельство о государственной регистрации базы данных № 2021620627 РФ. База данных пациентов, получавших протонную терапию по поводу онкологических заболеваний в системе ФМБА России : № 2021620501 : заявл. 26.03.2021. : опубл. 02.04.2021; заявитель Федеральный научно-клинический центр медицинской радиологии и онкологии ФМБА РФ. EDN KGBDVF.
5. Wroe AJ, Ghebremedhin A, Gordon IR, Schulte RW, Slater JD. Water Equivalent Thickness Analysis of Immobilization Devices for Clinical Implementation in Proton Therapy. Technol Cancer Res Treat. 2018 Oct; 13(5): 415-20. DOI: 10.7785/tcrtexpress.2013.600260.