Transfer Learning-Based Classification Comparison of Stroke

Author:

ALHATEMİ Rusul Ali Jabbar,SAVAŞ Serkan1

Affiliation:

1. KIRIKKALE ÜNİVERSİTESİ

Abstract

One type of brain disease that significantly harms people's lives and health is stroke. The diagnosis and management of strokes both heavily rely on the quantitative analysis of brain Magnetic Resonance (MR) images. The early diagnosis process is of great importance for the prevention of stroke cases. Stroke prediction is made possible by deep neural networks with the capacity for enormous data learning. Therefore, in thus study, several deep neural network models, including DenseNet121, ResNet50, Xception, MobileNet, VGG16, and EfficientNetB2 are proposed for transfer learning to classify MR images into two categories (stroke and non-stroke) in order to study the characteristics of the stroke lesions and achieve full intelligent automatic detection. The study dataset comprises of 1901 training images, 475 validation images, and 250 testing images. On the training and validation sets, data augmentation was used to increase the number of images to improve the models’ learning. The experimental results outperform all the state of arts that were used the same dataset. The overall accuracy of the best model is 98.8% and the same value for precision, recall, and f1-score using the EfficientNetB2 model for transfer learning.

Publisher

Anatolian Science - Bilgisayar Bilimleri Dergisi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3