SEPARATION OF DOMESTIC WASTE WITH DEEP LEARNING TECHNIQUES

Author:

KARACA Yunus Emre1,ASLAN Serpil2,HARK Cengiz3

Affiliation:

1. MALATYA TURGUT ÖZAL ÜNİVERSİTESİ, LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ

2. MALATYA TURGUT ÖZAL ÜNİVERSİTESİ

3. İNÖNÜ ÜNİVERSİTESİ

Abstract

Thanks to the rapid development of deep learning technology, smart systems used in almost every part of our daily life are being developed. Developed applications not only made our lives easier, but also contributed positively to nature. Traditional waste separation methods fall short in terms of efficiency and accuracy. In addition to its high cost, it can also cause problems in terms of environmental risks. In recent years, artificial intelligence, machine learning and the deep learning techniques it brings have become a popular method for solving complex problems such as organic, household and packaging waste sorting. In this study, the problem of separation of domestic wastes, which is of great importance in terms of both human and living life and the protection of nature, is discussed. In the artificial intelligence cluster; Classification performances were compared by using popular conventional neural network (CNN) based ResNet-50, DenseNet-121, Inception-V3, VGG16 architectures to detect and sort household waste with deep learning, a sub-branch of machine learning.

Publisher

Anatolian Science - Bilgisayar Bilimleri Dergisi

Reference21 articles.

1. (2019, Temmuz 3). Aralık 7, 2021 tarihinde BBC: https://www.bbc.com/turkce/haberler-dunya-48851661 adresinden alındı

2. Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., . . . Asari, V. K. (2018). The history began from alexnet: A comprehensive survey on deep learning approaches. arXiv preprint arXiv:1803.01164.

3. Beliën, J., Boeck, L. D., & Ackere, J. V. (2011). Municipal Solid Waste Collection Problems: A Literature Review.

4. Bircanoğlu, C., Atay, M., Beşer, F., Genç, Ö., & Kızrak, M. (2018). RecycleNet: Intelligent waste sorting using deep neural networks. In 2018 Innovations in Intelligent Systems and Applications (INISTA), (s. 1-7).

5. Doğan, F., & Türkoğlu, İ. (2019). Derin öğrenme modelleri ve uygulama alanlarına ilişkin bir derleme. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 409-445.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3