Surviving heat: Resilience of Nellore bulls to solar radiation exposure

Author:

Santos Mateus Medeiros dos,Souza-Junior João Batista FreireORCID,Castelo Thibério de SouzaORCID,Queiroz João Paulo Araújo Fernandes de,Costa Leonardo Lelis de Macedo

Abstract

We aimed to assess the physiological and biophysical responses of Nellore bulls exposed to solar radiation in semiarid conditions throughout the day. Sixteen Nellore bulls were examined in Tibau city, Northeast Brazil (5°52ʹ South, 37°20ʹ West, and 37 m above sea level) over four nonconsecutive days, with data collection taking place at one-hour intervals between 7:00 am and 5:00 pm. Four animals were analyzed each day and kept exposed to the sun for the duration of the study. The average age of the animals was three years, and their average body weight was 650±32 kg. The meteorological station measured air temperature (°C), relative humidity (%), solar radiation (W.m-2), and black globe temperatures (°C) every minute, while a digital anemometer thermohygrometer measured wind speed (m.s-1) at the same time. Respiratory rate (breaths.min-1), expired air temperature (°C), rectal temperature (°C), and body surface temperature (°C) were measured as physiological variables. Biophysical equations were used to estimate the sensible and latent heat transfer mechanisms (W.m-2). The air temperature ranged from 28.5 to 32.5°C, and direct solar radiation was between 21 and 891 W.m-². Between 11:00 am and 1:00 pm, the study observed heat gain through longwave radiation, which reached an average of 250 W.m-2, with a significant increase (P < 0.05) in respiratory rate and body surface temperature during this time. Convection was significant in heat dissipation, particularly when the wind speed was increased from 11:00 am. However, latent heat loss mechanisms were more effective in losing excess body heat under total sun exposure, despite the positive effect of convection. The study findings showed that Nellore bulls maintained their body temperature within a narrow range even when exposed to high solar radiation, thus demonstrating the efficiency of physiological and biophysical mechanisms during times of greater thermal challenge.

Publisher

Malque Publishing

Subject

Atmospheric Science,Animal Science and Zoology,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3