Diagnostic Yield of Whole Genome Sequencing After Nondiagnostic Exome Sequencing or Gene Panel in Developmental and Epileptic Encephalopathies

Author:

Palmer Elizabeth EmmaORCID,Sachdev Rani,Macintosh Rebecca,Melo Uirá Souto,Mundlos Stefan,Righetti SarahORCID,Kandula Tejaswi,Minoche Andre E.,Puttick Clare,Gayevskiy Velimir,Hesson Luke,Idrisoglu Senel,Shoubridge CherylORCID,Thai Monica Hong NgocORCID,Davis Ryan L.ORCID,Drew Alexander P.ORCID,Sampaio Hugo,Andrews Peter Ian,Lawson JohnORCID,Cardamone Michael,Mowat David,Colley Alison,Kummerfeld Sarah,Dinger Marcel E.ORCID,Cowley Mark J.ORCID,Roscioli Tony,Bye AnnORCID,Kirk Edwin

Abstract

ObjectiveTo assess the benefits and limitations of whole genome sequencing (WGS) compared to exome sequencing (ES) or multigene panel (MGP) in the molecular diagnosis of developmental and epileptic encephalopathies (DEE).MethodsWe performed WGS of 30 comprehensively phenotyped DEE patient trios that were undiagnosed after first-tier testing, including chromosomal microarray and either research ES (n = 15) or diagnostic MGP (n = 15).ResultsEight diagnoses were made in the 15 individuals who received prior ES (53%): 3 individuals had complex structural variants; 5 had ES-detectable variants, which now had additional evidence for pathogenicity. Eleven diagnoses were made in the 15 MGP-negative individuals (68%); the majority (n = 10) involved genes not included in the panel, particularly in individuals with postneonatal onset of seizures and those with more complex presentations including movement disorders, dysmorphic features, or multiorgan involvement. A total of 42% of diagnoses were autosomal recessive or X-chromosome linked.ConclusionWGS was able to improve diagnostic yield over ES primarily through the detection of complex structural variants (n = 3). The higher diagnostic yield was otherwise better attributed to the power of re-analysis rather than inherent advantages of the WGS platform. Additional research is required to assist in the assessment of pathogenicity of novel noncoding and complex structural variants and further improve diagnostic yield for patients with DEE and other neurogenetic disorders.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3