Flexibility of Fast Brain Dynamics and Disease Severity in Amyotrophic Lateral Sclerosis

Author:

Polverino Arianna,Lopez Emahnuel Troisi,Minino Roberta,Liparoti Marianna,Romano Antonella,Trojsi Francesca,Lucidi Fabio,Gollo Leonardo,Jirsa Viktor,Sorrentino Giuseppe,Sorrentino Pierpaolo

Abstract

Background and Objectives:Amyotrophic lateral sclerosis (ALS) is a multisystem disorder, as supported by clinical, molecular and neuroimaging evidence. As a consequence, predicting clinical features requires a description of large-scale neuronal dynamics. Normally, brain activity dynamically reconfigures over time, recruiting different brain areas. Brain pathologies induce stereotyped dynamics which, in turn, are linked to clinical impairment. Hence, based on recent evidence showing that brain functional networks become hyper-connected as ALS progresses, we hypothesized that the loss of flexible dynamics in ALS would predict the symptoms severity.Methods:To test this hypothesis, we quantified flexibility utilizing the “functional repertoire” (i.e. the number of configurations of active brain areas) as measured from source-reconstructed magnetoencephalography (MEG) in ALS patients and healthy controls. The activity of brain areas was reconstructed in the classical frequency bands, and the functional repertoire was estimated to quantify spatio-temporal fluctuations of brain activity. Finally, we built a k-fold cross validated multilinear model to predict the individual clinical impairment from the size of the functional repertoire.Results:Comparing 42 ALS patients and 42 healthy controls, we found a more stereotyped brain dynamics in ALS patients (P < 0.05), as conveyed by the smaller functional repertoire. The relationship between the size of the functional repertoire and the clinical scores in the ALS group showed significant correlations in both the delta and the theta frequency bands. Furthermore, through a k-fold cross validated multilinear regression model, we found that the functional repertoire predicted both clinical staging (P < 0.001 and P < 0.01, in delta and theta bands, respectively) and symptoms severity (P < 0.001, in both delta and theta bands).Discussion:Our work shows that: 1) ALS pathology reduces the flexibility of large-scale brain dynamics; 2) sub-cortical regions play a key role in determining brain dynamics; 3) reduced brain flexibility predicts disease stage as well as symptoms severity. Our approach provides a non-invasive tool to quantify alterations in brain dynamics in ALS (and, possibly, other neurodegenerative diseases), thus opening new opportunities in disease management as well as a framework to test, in the near future, the effects of disease-modifying interventions at the whole-brain level.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3