Author:
Brunklaus Andreas,Pérez-Palma Eduardo,Ghanty Ismael,Xinge Ji,Brilstra Eva,Ceulemans Berten,Chemaly Nicole,de Lange Iris,Depienne Christel,Guerrini Renzo,Mei Davide,Møller Rikke S.,Nabbout Rima,Regan Brigid M.,Schneider Amy L.,Scheffer Ingrid E.,Schoonjans An-Sofie,Symonds Joseph D.,Weckhuysen Sarah,Kattan Michael W.,Zuberi Sameer M.,Lal Dennis
Abstract
Background and ObjectivesPathogenic variants in the neuronal sodium channel α1 subunit gene (SCN1A) are the most frequent monogenic cause of epilepsy. Phenotypes comprise a wide clinical spectrum, including severe childhood epilepsy; Dravet syndrome, characterized by drug-resistant seizures, intellectual disability, and high mortality; and the milder genetic epilepsy with febrile seizures plus (GEFS+), characterized by normal cognition. Early recognition of a child's risk for developing Dravet syndrome vs GEFS+ is key for implementing disease-modifying therapies when available before cognitive impairment emerges. Our objective was to develop and validate a prediction model using clinical and genetic biomarkers for early diagnosis of SCN1A-related epilepsies.MethodsWe performed a retrospective multicenter cohort study comprising data from patients with SCN1A-positive Dravet syndrome and patients with GEFS+ consecutively referred for genetic testing (March 2001–June 2020) including age at seizure onset and a newly developed SCN1A genetic score. A training cohort was used to develop multiple prediction models that were validated using 2 independent blinded cohorts. Primary outcome was the discriminative accuracy of the model predicting Dravet syndrome vs other GEFS+ phenotypes.ResultsA total of 1,018 participants were included. The frequency of Dravet syndrome was 616/743 (83%) in the training cohort, 147/203 (72%) in validation cohort 1, and 60/72 (83%) in validation cohort 2. A high SCN1A genetic score (133.4 [SD 78.5] vs 52.0 [SD 57.5]; p < 0.001) and young age at onset (6.0 [SD 3.0] vs 14.8 [SD 11.8] months; p < 0.001) were each associated with Dravet syndrome vs GEFS+. A combined SCN1A genetic score and seizure onset model separated Dravet syndrome from GEFS+ more effectively (area under the curve [AUC] 0.89 [95% CI 0.86–0.92]) and outperformed all other models (AUC 0.79–0.85; p < 0.001). Model performance was replicated in both validation cohorts 1 (AUC 0.94 [95% CI 0.91–0.97]) and 2 (AUC 0.92 [95% CI 0.82–1.00]).DiscussionThe prediction model allows objective estimation at disease onset whether a child will develop Dravet syndrome vs GEFS+, assisting clinicians with prognostic counseling and decisions on early institution of precision therapies (http://scn1a-prediction-model.broadinstitute.org/).Classification of EvidenceThis study provides Class II evidence that a combined SCN1A genetic score and seizure onset model distinguishes Dravet syndrome from other GEFS+ phenotypes.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献