Unique white matter structural connectivity in early-stage drug-naive Parkinson disease

Author:

Mishra Virendra R.ORCID,Sreenivasan Karthik R.,Yang Zhengshi,Zhuang Xiaowei,Cordes Dietmar,Mari Zoltan,Litvan Irene,Fernandez Hubert H.,Eidelberg David,Ritter Aaron,Cummings Jeffrey L.,Walsh Ryan R.

Abstract

ObjectiveTo investigate the topographic arrangement and strength of whole-brain white matter (WM) structural connectivity in patients with early-stage drug-naive Parkinson disease (PD).MethodsWe employed a model-free data-driven approach for computing whole-brain WM topologic arrangement and connectivity strength between brain regions by utilizing diffusion MRI of 70 participants with early-stage drug-naive PD and 41 healthy controls. Subsequently, we generated a novel group-specific WM anatomical network by minimizing variance in anatomical connectivity of each group. Global WM connectivity strength and network measures were computed on this group-specific WM anatomical network and were compared between the groups. We tested correlations of these network measures with clinical measures in PD to assess their pathophysiologic relevance.ResultsPD-relevant cortical and subcortical regions were identified in the novel PD-specific WM anatomical network. Impaired modular organization accompanied by a correlation of network measures with multiple clinical variables in early PD were revealed. Furthermore, disease duration was negatively correlated with global connectivity strength of the PD-specific WM anatomical network.ConclusionBy minimizing variance in anatomical connectivity, this study found the presence of a novel WM structural connectome in early PD that correlated with clinical symptoms, despite the lack of a priori analytic assumptions. This included the novel finding of increased structural connectivity between known PD-relevant brain regions. The current study provides a framework for further investigation of WM structural changes underlying the clinical and pathologic heterogeneity of PD.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3