Amyloid and cerebrovascular burden divergently influence brain functional network changes over time

Author:

Chong Joanna Su Xian,Jang Hyemin,Kim Hee Jin,Ng Kwun Kei,Na Duk L.,Lee Jae Hong,Seo Sang Won,Zhou Juan

Abstract

ObjectiveTo examine the effects of baseline Alzheimer disease and cerebrovascular disease markers on longitudinal default mode network (DMN) and executive control network (ECN) functional connectivity (FC) changes in mild cognitive impairment (MCI).MethodsWe studied 30 patients with amnestic MCI (aMCI) and 55 patients with subcortical vascular MCI (svMCI) with baseline Pittsburgh Compound B (PiB)–PET scans and longitudinal MRI scans. Participants were followed up clinically with annual MRI for up to 4 years (aMCI: 26 with 2 timepoints, 4 with 3 timepoints; svMCI: 13 with 2 timepoints, 16 with 3 timepoints, 26 with 4 timepoints).Resultsβ-Amyloid (Aβ) burden was associated with longitudinal DMN FC declines, while cerebrovascular burden was associated with longitudinal ECN FC changes. When patients were divided into PiB+ and PiB− groups, PiB+ patients showed longitudinal DMN FC declines, while patients with svMCI showed longitudinal ECN FC increases. Direct comparisons between the 2 groups without mixed pathology (aMCI PiB+ and svMCI PiB−) recapitulated this divergent pattern: aMCI PiB+ patients showed steeper longitudinal DMN FC declines, while svMCI PiB− patients showed steeper longitudinal ECN FC increases. Finally, using baseline PiB uptake and lacune numbers as continuous variables, baseline PiB uptake showed inverse U-shape associations with longitudinal DMN FC changes in both MCI subtypes, while baseline lacune numbers showed mainly inverse U-shape relationships with longitudinal ECN FC changes in patients with svMCI.ConclusionsOur findings underscore the divergent effects of Aβ and cerebrovascular burden on longitudinal FC changes in the DMN and ECN in the predementia stage, which reflect the underlying pathology and may be used to track early changes in Alzheimer disease and cerebrovascular disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3