Ictal quantitative surface electromyography correlates with postictal EEG suppression

Author:

Arbune Anca A.,Conradsen Isa,Cardenas Damon P.,Whitmire Luke E.,Voyles Shannon R.,Wolf Peter,Lhatoo Samden,Ryvlin Philippe,Beniczky Sándor

Abstract

ObjectiveTo test the hypothesis that neurophysiologic biomarkers of muscle activation during convulsive seizures reveal seizure severity and to determine whether automatically computed surface EMG parameters during seizures can predict postictal generalized EEG suppression (PGES), indicating increased risk for sudden unexpected death in epilepsy. Wearable EMG devices have been clinically validated for automated detection of generalized tonic-clonic seizures. Our goal was to use quantitative EMG measurements for seizure characterization and risk assessment.MethodsQuantitative parameters were computed from surface EMGs recorded during convulsive seizures from deltoid and brachial biceps muscles in patients admitted to long-term video-EEG monitoring. Parameters evaluated were the durations of the seizure phases (tonic, clonic), durations of the clonic bursts and silent periods, and the dynamics of their evolution (slope). We compared them with the duration of the PGES.ResultsWe found significant correlations between quantitative surface EMG parameters and the duration of PGES (p < 0.001). Stepwise multiple regression analysis identified as independent predictors in deltoid muscle the duration of the clonic phase and in biceps muscle the duration of the tonic-clonic phases, the average silent period, and the slopes of the silent period and clonic bursts. The surface EMG-based algorithm identified seizures at increased risk (PGES ≥20 seconds) with an accuracy of 85%.ConclusionsIctal quantitative surface EMG parameters correlate with PGES and may identify seizures at high risk.Classification of evidenceThis study provides Class II evidence that during convulsive seizures, surface EMG parameters are associated with prolonged postictal generalized EEG suppression.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3