Patterns of striatal dopamine depletion in early Parkinson disease

Author:

Chung Seok Jong,Lee Hye Sun,Yoo Han Soo,Lee Yang Hyun,Lee Phil Hyu,Sohn Young H.

Abstract

ObjectiveTo investigate whether the patterns of striatal dopamine depletion on dopamine transporter (DAT) scans could provide information on the long-term prognosis in Parkinson disease (PD).MethodsWe enrolled 205 drug-naive patients with early-stage PD, who underwent 18F-FP-CIT PET scans at initial assessment and received PD medications for 3 or more years. After quantifying the DAT availability in each striatal subregion, factor analysis was conducted to simplify the identification of striatal dopamine depletion patterns and to yield 4 striatal subregion factors. We assessed the effect of these factors on the development of levodopa-induced dyskinesia (LID), wearing-off, freezing of gait (FOG), and dementia during the follow-up period (6.84 ± 1.80 years).ResultsThe 4 factors indicated which striatal subregions were relatively preserved: factor 1 (caudate), factor 2 (more-affected sensorimotor striatum), factor 3 (less-affected sensorimotor striatum), and factor 4 (anterior putamen). Cox regression analyses using the composite scores of these striatal subregion factors as covariates demonstrated that selective dopamine depletion in the sensorimotor striatum was associated with a higher risk for developing LID. Selective dopamine loss in the putamen, particularly in the anterior putamen, was associated with early development of wearing-off. Selective involvement of the anterior putamen was associated with a higher risk for dementia conversion. However, the patterns of striatal dopamine depletion did not affect the risk of FOG.ConclusionsThese findings suggested that the patterns of striatal dopaminergic denervation, which were estimated by the equation derived from the factor analysis, have a prognostic implication in patients with early-stage PD.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3