A hypothetical scheme for the brainstem control of vertical gaze

Author:

Bhidayasiri Roongroj,Plant Gordon T.,Leigh R. John

Abstract

Objectives: To develop a hypothetical scheme to account for clinical disorders of vertical gaze based on recent insights gained from experimental studies.Methods: The authors critically reviewed reports of anatomy, physiology, and effects of pharmacologic inactivation of midbrain nuclei.Results: Vertical saccades are generated by burst neurons lying in the rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF). Each burst neuron projects to motoneurons in a manner such that the eyes are tightly coordinated (yoked) during vertical saccades. Saccadic innervation from riMLF is unilateral to depressor muscles but bilateral to elevator muscles, with axons crossing within the oculomotor nucleus. Thus, riMLF lesions cause conjugate saccadic palsies that are usually either complete or selectively downward. Each riMLF contains burst neurons for both up and down saccades, but only for ipsilateral torsional saccades. Therefore, unilateral riMLF lesions can be detected at the bedside if torsional quick phases are absent during ipsidirectional head rotations in roll. The interstitial nucleus of Cajal (INC) is important for holding the eye in eccentric gaze after a vertical saccade and coordinating eye–head movements in roll. Bilateral INC lesions limit the range of vertical gaze. The posterior commissure (PC) is the route by which INC projects to ocular motoneurons. Inactivation of PC causes vertical gaze-evoked nystagmus, but destructive lesions cause a more profound defect of vertical gaze, probably due to involvement of the nucleus of the PC. Vestibular signals originating from each of the vertical labyrinthine canals ascend to the midbrain through several distinct pathways; normal vestibular function is best tested by rotating the patient’s head in the planes of these canals.Conclusions: Predictions of a current scheme to account for vertical gaze palsy can be tested at the bedside with systematic examination of each functional class of eye movements.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical)

Cited by 119 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3