Plasticity-related gene 3 (LPPR1) and age at diagnosis of Parkinson disease

Author:

Wallen Zachary D.,Chen Honglei,Hill-Burns Erin M.,Factor Stewart A.,Zabetian Cyrus P.,Payami Haydeh

Abstract

ObjectiveTo identify modifiers of age at diagnosis of Parkinson disease (PD).MethodsGenome-wide association study (GWAS) included 1,950 individuals with PD from the NeuroGenetics Research Consortium (NGRC) study. Replication was conducted in the Parkinson's, Genes and Environment study, including 209 prevalent (PAGEP) and 517 incident (PAGEI) PD cases. Cox regression was used to test association with age at diagnosis. Individuals without neurologic disease were used to rule out confounding. Gene-level analysis and functional annotation were conducted using Functional Mapping and Annotation of GWAS platform (FUMA).ResultsThe GWAS revealed 2 linked but seemingly independent association signals that mapped to LPPR1 on chromosome 9. LPPR1 was significant in gene-based analysis (p = 1E-8). The top signal (rs17763929, hazard ratio [HR] = 1.88, p = 5E-8) replicated in PAGEP (HR = 1.87, p = 0.01) but not in PAGEI. The second signal (rs73656147) was robust with no evidence of heterogeneity (HR = 1.95, p = 3E-6 in NGRC; HR = 2.14, p = 1E-3 in PAGEP + PAGEI, and HR = 2.00, p = 9E-9 in meta-analysis of NGRC + PAGEP + PAGEI). The associations were with age at diagnosis, not confounded by age in patients or in the general population. The PD-associated regions included variants with Combined Annotation Dependent Depletion (CADD) scores = 10–19 (top 1%–10% most deleterious mutations in the genome), a missense with predicted destabilizing effect on LPPR1, an expression quantitative trait locus (eQTL) for GRIN3A (false discovery rate [FDR] = 4E-4), and variants that overlap with enhancers in LPPR1 and interact with promoters of LPPR1 and 9 other brain-expressed genes (Hi-C FDR < 1E-6).ConclusionsThrough association with age at diagnosis, we uncovered LPPR1 as a modifier gene for PD. LPPR1 expression promotes neuronal regeneration after injury in animal models. Present data provide a strong foundation for mechanistic studies to test LPPR1 as a driver of response to damage and a therapeutic target for enhancing neuroregeneration and slowing disease progression.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Genetics (clinical),Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3