Spinal cord α-synuclein deposition associated with myoclonus in patients with MSA-C

Author:

Hwang Jaeho,Bank Anna M.,Mortazavi Farzad,Oakley Derek H.,Frosch Matthew P.,Schmahmann Jeremy D.

Abstract

ObjectiveTo test the hypothesis that myoclonus in patients with multiple system atrophy with predominant cerebellar ataxia (MSA-C) is associated with a heavier burden of α-synuclein deposition in the motor regions of the spinal cord, we compared the degree of α-synuclein deposition in spinal cords of 3 patients with MSA-C with myoclonus and 3 without myoclonus.MethodsAll human tissue was obtained by the Massachusetts General Hospital Department of Pathology with support from and according to neuropathology guidelines of the Massachusetts Alzheimer's Disease Research Center. Tissue was stained with Luxol fast blue and hematoxylin & eosin for morphologic evaluation, and with a mouse monoclonal antibody to α-synuclein and Vectastain DAB kit. Images of the spinal cord sections were digitized using a 10× objective lens. Grayscale versions of these images were transferred to ImageJ software for quantitative analysis of 8 different regions of interest (ROIs) in the spinal cord: dorsal column, anterior white column, left and right dorsal horns, left and right anterior horns, and left and right lateral corticospinal tracts. A mixed-effect, multiple linear regression model was constructed to determine if patients with and without myoclonus had significantly different distributions of α-synuclein deposition across the various ROIs.ResultsPatients with myoclonus had more α-synuclein in the anterior horns (p < 0.001) and lateral corticospinal tracts (p = 0.02) than those without myoclonus.ConclusionsIn MSA-C, myoclonus appears to be associated with a higher burden of α-synuclein deposition within spinal cord motor regions. Future studies with more patients will be needed to confirm these findings.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3