Lateralized periodic discharges frequency correlates with glucose metabolism

Author:

Subramaniam Thanujaa,Jain Aditya,Hall Lance T.,Cole Andrew J.,Westover M. Brandon,Rosenthal Eric S.ORCID,Struck Aaron F.

Abstract

ObjectiveTo investigate the correlation between characteristics of lateralized periodic discharges (LPDs) and glucose metabolism measured by 18F-fluorodeoxyglucose (FDG)–PET.MethodsWe retrospectively reviewed medical records to identify patients who underwent FDG-PET during EEG monitoring with LPDs present during the FDG uptake period. Two blinded board-certified neurophysiologists independently interpreted EEGs. FDG uptake was measured using standardized uptake value (SUV). Structural images were fused with PET images to aid with localization of SUV. Two PET readers independently measured maximum SUV. Relative SUV values were obtained by normalization of the maximum SUV to the SUV of pons (SUVRpons). LPD frequency was analyzed both as a categorical variable and as a continuous measure. Other secondary variables included duration, amplitude, presence of structural lesion, and “plus” EEG features such as rhythmic or fast sharp activity.ResultsNine patients were identified and 7 had a structural etiology for LPDs. Analysis using frequency as a categorical variable and continuous variable showed an association between increased LPD frequency and increased ipsilateral SUVRpons (p = 0.02). Metabolism associated with LPDs (0.5 Hz as a baseline) increased by a median of 100% at 1 Hz and for frequencies >1 Hz increased by a median of 309%. There were no statistically significant differences in SUVRpons for other factors including duration (p = 0.10), amplitude (p = 0.80), structural etiology (p = 0.55), or “plus” features such as rhythmic or fast sharp activity (p = 0.84).ConclusionsMetabolic activity increases monotonically with LPD frequency. LPD frequency should be a measure of interest when developing neuroprotection strategies in critical neurologic illness.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical)

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3