Guidelines for Conducting Ethical Artificial Intelligence Research in Neurology

Author:

Chiang Sharon,Picard Rosalind W.,Chiong Winston,Moss Robert,Worrell Gregory A.,Rao Vikram R.,Goldenholz Daniel M.ORCID

Abstract

Preemptive recognition of the ethical implications of study design and algorithm choices in artificial intelligence (AI) research is an important but challenging process. AI applications have begun to transition from a promising future to clinical reality in neurology. As the clinical management of neurology is often concerned with discrete, often unpredictable, and highly consequential events linked to multimodal data streams over long timescales, forthcoming advances in AI have great potential to transform care for patients. However, critical ethical questions have been raised with implementation of the first AI applications in clinical practice. Clearly, AI will have far-reaching potential to promote, but also to endanger, ethical clinical practice. This article employs an anticipatory ethics approach to scrutinize how researchers in neurology can methodically identify ethical ramifications of design choices early in the research and development process, with a goal of preempting unintended consequences that may violate principles of ethical clinical care. First, we discuss the use of a systematic framework for researchers to identify ethical ramifications of various study design and algorithm choices. Second, using epilepsy as a paradigmatic example, anticipatory clinical scenarios that illustrate unintended ethical consequences are discussed, and failure points in each scenario evaluated. Third, we provide practical recommendations for understanding and addressing ethical ramifications early in methods development stages. Awareness of the ethical implications of study design and algorithm choices that may unintentionally enter AI is crucial to ensuring that incorporation of AI into neurology care leads to patient benefit rather than harm.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3