Machine Learning–Based Automatic Rating for Cardinal Symptoms of Parkinson Disease

Author:

Park Kye WonORCID,Lee Eun-Jae,Lee Jun Seong,Jeong Jinhoon,Choi Nari,Jo Sungyang,Jung Mina,Do Ja Yeon,Kang Dong-Wha,Lee June-Goo,Chung Sun Ju

Abstract

ObjectiveWe developed and investigated the feasibility of a machine learning–based automated rating for the 2 cardinal symptoms of Parkinson disease (PD): resting tremor and bradykinesia.MethodsUsing OpenPose, a deep learning–based human pose estimation program, we analyzed video clips for resting tremor and finger tapping of the bilateral upper limbs of 55 patients with PD (110 arms). Key motion parameters, including resting tremor amplitude and finger tapping speed, amplitude, and fatigue, were extracted to develop a machine learning–based automatic Unified Parkinson's Disease Rating Scale (UPDRS) rating using support vector machine (SVM) method. To evaluate the performance of this model, we calculated weighted κ and intraclass correlation coefficients (ICCs) between the model and the gold standard rating by a movement disorder specialist who is trained and certified by the Movement Disorder Society for UPDRS rating. These values were compared to weighted κ and ICC between a nontrained human rater and the gold standard rating.ResultsFor resting tremors, the SVM model showed a very good to excellent reliability range with the gold standard rating (κ 0.791; ICC 0.927), with both values higher than that of nontrained human rater (κ 0.662; ICC 0.861). For finger tapping, the SVM model showed a very good reliability range with the gold standard rating (κ 0.700 and ICC 0.793), which was comparable to that for nontrained human raters (κ 0.627; ICC 0.797).ConclusionMachine learning–based algorithms that automatically rate PD cardinal symptoms are feasible, with more accurate results than nontrained human ratings.Classification of EvidenceThis study provides Class II evidence that machine learning–based automated rating of resting tremor and bradykinesia in people with PD has very good reliability compared to a rating by a movement disorder specialist.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3