Metabolomics Signature of Patients With Narcolepsy

Author:

Dauvilliers YvesORCID,Barateau LucieORCID,Middleton Benita,van der Veen Daan R.ORCID,Skene Debra J.ORCID

Abstract

Background and ObjectivesNarcolepsy type 1 (NT1) is an orphan brain disorder caused by the irreversible destruction of orexin neurons. Metabolic disturbances are common in patients with NT1 who have a body mass index (BMI) 10% to 20% higher than the general population, with one-third being obese (BMI >30 kg/m2). Besides the destruction of orexin neurons in NT1, the metabolic alterations in obese and nonobese patients with NT1 remain unknown. The aim of this study was to identify possible differences in plasma metabolic profiles between patients with NT1 and controls as a function of their BMI status.MethodsWe used a targeted liquid chromatography–mass spectrometry metabolomics approach to measure 141 circulating, low-molecular-weight metabolites in drug-free fasted plasma samples from 117 patients with NT1 (including 41 obese individuals) compared with 116 BMI-matched controls (including 57 obese individuals).ResultsCommon metabolites driving the difference between patients with NT1 and controls, regardless of BMI, were identified, namely sarcosine, glutamate, nonaylcarnitine (C9), 5 long-chain lysophosphatidylcholine acyls, 1 sphingolipid, 12 phosphatidylcholine diacyls, and 11 phosphatidylcholine acyl-akyls, all showing increased concentrations in NT1. Metabolite concentrations significantly affected by NT1 (n = 42) and BMI category (n = 40) showed little overlap (n = 5). Quantitative enrichment analysis revealed common metabolic pathways that were implicated in the NT1/control differences in both normal BMI and obese comparisons, namely glycine and serine, arachidonic acid, and tryptophan metabolism. The metabolites driving these differences were glutamate, sarcosine, and ornithine (glycine and serine metabolism); glutamate and PC aa C34:4 (arachidonic acid metabolism); and glutamate, serotonin, and tryptophan (tryptophan metabolism). Linear metabolite-endophenotype regression analyses highlight that as part of the NT1 metabolic phenotype, most of the relationships between the sleep parameters (i.e., slow-wave sleep duration, sleep latency, and periodic leg movement) and metabolite concentrations seen in the controls were lost.DiscussionThese results represent the most comprehensive metabolic profiling of patients with NT1 as a function of BMI and propose some metabolic diagnostic biomarkers for NT1, namely glutamate, sarcosine, serotonin, tryptophan, nonaylcarnitine, and some phosphatidylcholines. The metabolic pathways identified offer, if confirmed, possible targets for treatment of obesity in NT1.Classification of EvidenceThis study provides Class II evidence that a distinct metabolic profile can differentiate patients with NT1 from patients without the disorder.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical)

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3