Hematoma Expansion Shift Analysis to Assess Acute Intracerebral Hemorrhage Treatments

Author:

Yogendrakumar VignanORCID,Ramsay TimORCID,Menon Bijoy K.,Qureshi Adnan I.,Saver Jeffrey L.,Dowlatshahi Dar

Abstract

ObjectiveHematoma expansion (HE) is commonly analyzed as a dichotomous outcome in intracerebral hemorrhage (ICH) trials. In this proof-of-concept study, we propose an HE shift analysis model as a method to improve the evaluation of candidate ICH therapies.MethodsUsing data from the Antihypertensive Treatment of Acute Cerebral Hemorrhage II (ATACH-2) trial, we performed HE shift analysis in response to intensive blood pressure lowering by generating polychotomous strata based on previously established HE definitions, percentile/absolute quartiles of hematoma volume change, and quartiles of 24-hour follow-up hematoma volumes. The relationship between blood pressure treatment and HE shift was explored with proportional odds models.ResultsThe primary analysis population included 863 patients. In both treatment groups, approximately one-third of patients exhibited no HE. With the use of a trichotomous HE stratification, the highest strata of ≥33% revealed a 5.8% reduction in hematoma growth for those randomized to intensive therapy (adjusted odds ratio [aOR] 0.77, 95% confidence interval [CI] 0.60–0.99). Using percentile quartiles of hematoma volume change, we observed a favorable shift to reduce growth in patients treated with intensive therapy (aOR 0.73, 95% CI 0.57–0.93). Similarly, in a tetrachotomous analysis of 24-hour follow-up hematoma volumes, shifts in the highest stratum (>21.9 mL) were most notable.ConclusionsOur findings suggest that intensive blood pressure reduction may preferentially mitigate growth in patients at risk of high volume HE. A shift analysis model of HE provides additional insights into the biological effects of a given therapy and may be an additional way to assess hemostatic agents in future studies.Trial Registration InformationClinicalTrials.gov Identifier:NCT01176565.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3