Development and validation of a predictive model of drug-resistant genetic generalized epilepsy

Author:

Choi Hyunmi,Detyniecki KamilORCID,Bazil Carl,Thornton Suzanne,Crosta Peter,Tolba Hatem,Muneeb Manahil,Hirsch Lawrence J.,Heinzen Erin L.,Sen Arjune,Depondt Chantal,Perucca PieroORCID,Heiman Gary A.ORCID

Abstract

ObjectiveTo develop and validate a clinical prediction model for antiepileptic drug (AED)–resistant genetic generalized epilepsy (GGE).MethodWe performed a case-control study of patients with and without drug-resistant GGE, nested within ongoing longitudinal observational studies of AED response at 2 tertiary epilepsy centers. Using a validation dataset, we tested the predictive performance of 3 candidate models, developed from a training dataset. We then tested the candidate models' predictive ability on an external testing dataset.ResultsOf 5,189 patients in the ongoing longitudinal study, 121 met criteria for AED-resistant GGE and 468 met criteria for AED-responsive GGE. There were 66 patients with GGE in the external dataset, of whom 17 were cases. Catamenial epilepsy, history of a psychiatric condition, and seizure types were strongly related with drug-resistant GGE case status. Compared to women without catamenial epilepsy, women with catamenial epilepsy had about a fourfold increased risk for AED resistance. The calibration of 3 models, assessing the agreement between observed outcomes and predictions, was adequate. Discriminative ability, as measured with area under the receiver operating characteristic curve (AUC), ranged from 0.58 to 0.65.ConclusionCatamenial epilepsy, history of a psychiatric condition, and the seizure type combination of generalized tonic clonic, myoclonic, and absence seizures are negative prognostic factors of drug-resistant GGE. The AUC of 0.6 is not consistent with truly effective separation of the groups, suggesting other unmeasured variables may need to be considered in future studies to improve predictability.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3