Imaging of Central Nervous System Hemorrhage

Author:

Hakimi Ryan

Abstract

ABSTRACT OBJECTIVE This article aims to familiarize the reader with the various types of nontraumatic central nervous system (CNS) hemorrhage and the various neuroimaging modalities used to help diagnose and manage them. LATEST DEVELOPMENTS According to the 2019 Global Burden of Diseases, Injuries, and Risk Factors Study, intraparenchymal hemorrhage accounts for 28% of the global stroke burden. In the United States, hemorrhagic stroke makes up 13% of all strokes. The incidence of intraparenchymal hemorrhage increases substantially with age; thus, despite improvements in blood pressure control through various public health measures, the incidence is not decreasing as the population ages. In fact, in the most recent longitudinal study of aging, autopsy findings showed intraparenchymal hemorrhage and cerebral amyloid angiopathy in 30% to 35% of patients. ESSENTIAL POINTS Rapid identification of CNS hemorrhage, which includes intraparenchymal hemorrhage, intraventricular hemorrhage, and subarachnoid hemorrhage, requires either head CT or brain MRI. Once hemorrhage is identified on the screening neuroimaging study, the pattern of blood in conjunction with the history and physical examination can guide subsequent neuroimaging, laboratory, and ancillary tests as part of the etiologic assessment. After determination of the cause, the chief aims of the treatment regimen are reducing hemorrhage expansion and preventing subsequent complications such as cytotoxic cerebral edema, brain compression, and obstructive hydrocephalus. In addition, nontraumatic spinal cord hemorrhage will also be briefly discussed.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Genetics (clinical),Neurology (clinical)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploration on Central Nervous System Injury Detection Technology Based on Data Analysis;2023 IEEE 15th International Conference on Computational Intelligence and Communication Networks (CICN);2023-12-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3