MRI diffusion mapping of reversible and irreversible ischemic injury in focal brain ischemia

Author:

Hasegawa Y.,Fisher M.,Latour L. L.,Dardzinski B. J.,Sotak C. H.

Abstract

The reduction of the apparent diffusion coefficient (ADC) of water shortly after a focal ischemic insult is thought to reflect intracellular water accumulation (cytotoxic edema) related to high-energy metabolism failure and loss of ion homeostasis. We attempted to clarify whether varying ranges of ADC measurements in ischemic brain tissue can be used to differentiate between reversible and irreversible ischemic lesions before reperfusion in a temporary ischemia model. We induced 45 minutes of temporary ischemia in 12 rats using the middle cerebral artery suture occlusion method. Regional changes of ADC values were serially measured in seven regions of interest in each hemisphere and evaluated by ΔADC, defined as the difference between ADC value in an ischemic region and that in a contralateral homologous region. We acquired dynamic contrast-enhanced perfusion images 2 minutes before and after reperfusion to document reduced perfusion and its restoration. We confirmed the infarct area by 2,3,5-triphenyltetrazolium chloride staining 24 hours after occlusion and correlated this with the MRI studies. Recovery of initially reduced ADC values occurred only in ischemic regions where ΔADC values were not below −0.25 × 10−5 cm2/sec. Although the extent of infarction at postmortem examination varied in regions with moderately decreased prereperfusion ADC values, more than 70% of regions of interest with slight declines of prereperfusion ADC values exhibited no infarction. ADC values progressively decreased after reperfusion in regions that initially had severely decreased prereperfusion ADC values, and postmortem examination always demonstrated infarction in such regions. These results suggest that measurement of ΔADC can provide information that will enable the clinician to discriminate between irreversible and potentially reversible ischemic regions before reperfusion is performed.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3