Cerebellar reorganization following cortical injury in humans

Author:

Niimura Kaku,Chugani Diane C.,Muzik Otto,Chugani Harry T.

Abstract

Objective: The authors investigated chronic cerebellar reorganization following unilateral cortical lesions in children and adults using PET to measure benzodiazepine receptor (BZR) binding with [11C]flumazenil (FMZ) and glucose metabolism with 2-deoxy-2[18F]fluoro-D-glucose (FDG).Background: Crossed cerebellar diaschisis (CCD) is defined as decreased metabolism or blood flow in the cerebellum contralateral to a cortical insult measured by functional neuroimaging, and is typically seen in adults with large frontal or parietal lesions. The authors previously reported that CCD of glucose metabolism was not as prominent in children as in adults, and that some children showed a paradoxical pattern of increased glucose utilization in cerebellar cortex contralateral to the cortical lesion. The current study investigated whether CCD is associated with alterations in the gamma-aminobutyric acid (GABAA)/BZR complex.Methods: Patients with frontal lesions alone or with parietal lesions were compared with patients with temporal lesions, which are typically not associated with CCD.Results: Children with lesion onset before 1 year of age showed significantly higher glucose utilization in contralateral posterior quadrangular and superior semilunar lobules of cerebellar cortex than did adults. Two patterns of change in cerebellar BZR binding were seen in children: 1) Five of 10 children showed increased BZR binding in the dentate nucleus contralateral to the lesion, and 2) the remaining five children showed no increase in dentate nucleus BZR binding but showed increased binding in the lateral lobules of the cerebellar cortex contralateral to the lesion. Adults showed increased binding only in contralateral dentate nucleus and not in cerebellar cortex. The size and severity of the supratentorial lesion, as well as age at the time of injury, were important factors in these findings.Conclusions: Reorganization of GABA-mediated mechanisms and glucose metabolism in cerebellum following cortical injury differs with size of lesion and age at the time of injury.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical)

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3