Abstract
ObjectiveMany genetic studies of intractable epilepsy in pediatric patients primarily focus on inherited, constitutional genetic deficiencies identified in patient blood. Recently, studies have revealed somatic mosaicism associated with epilepsy in which genetic variants are present only in a subset of brain cells. We hypothesize that tissue-specific, somatic mosaicism represents an important genetic etiology in epilepsy and aim to discover somatic alterations in epilepsy-affected brain tissue.MethodsWe have pursued a research study to identify brain somatic mosaicism, using next-generation sequencing (NGS) technologies, in patients with treatment refractory epilepsy who have undergone surgical resection of affected brain tissue.ResultsWe used an integrated combination of NGS techniques and conventional approaches (radiology, histopathology, and electrophysiology) to comprehensively characterize multiple brain regions from a single patient with intractable epilepsy. We present a 3-year-old male patient with West syndrome and intractable tonic seizures in whom we identified a pathogenic frameshift somatic variant in SLC35A2, present at a range of variant allele fractions (4.2%–19.5%) in 12 different brain tissues detected by targeted sequencing. The proportion of the SLC35A2 variant correlated with severity and location of neurophysiology and neuroimaging abnormalities for each tissue.ConclusionsOur findings support the importance of tissue-based sequencing and highlight a correlation in our patient between SLC35A2 variant allele fractions and the severity of epileptogenic phenotypes in different brain tissues obtained from a grid-based resection of clinically defined epileptogenic regions.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Genetics (clinical),Neurology (clinical)
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献