Reduced levels of skeletal muscle Na+K+-ATPase in McArdle disease

Author:

Haller Ronald G.,Clausen Torben,Vissing John

Abstract

We evaluated the hypothesis that impaired sarcolemmal function associated with exaggerated potassium release, impaired potassium uptake, or both may contribute to exertional fatigue and abnormal circulatory responses to exercise in McArdle disease (MD). The cellular mechanism of exertional fatigue and muscle injury in MD is unknown but likely involves impaired function of the ATPases that couple ATP hydrolysis to cellular work, including the muscle sodium potassium pump (Na+K+-ATPase). However, the concentration of muscle Na+K+ pumps in MD is not known, and no studies have related exercise increases in blood potassium concentrations to muscle Na+K+ pump levels. We measured muscle Na+K+ pumps (3H-ouabain binding) and plasma K+ in response to 20 minutes of cycle exercise in six patients with MD and in six sex-, age-, and weight-matched sedentary individuals. MD patients had lower levels of 3H-ouabain binding (231 ± 18 pmol/g w.w., mean ± SD, range, 210 to 251) than control subjects (317± 37, range, 266 to 371, p < 0.0004), higher peak increases in plasma potassium in response to 45 ± 7 W cycle exercise(MD, 1.00 ± 0.15 mmol/L; control subjects, 0.48 ± 0.09;p < 0.0001), and mean exercise heart rate responses to exercise that were 45 ± 12 bpm greater than control subjects. Our results indicate that Na+K+ pump levels are low in MD patients compared with healthy subjects and identify a limitation of potassium reuptake that could result in sarcolemmal failure during peak rates of membrane activation and may promote exaggerated potassium-activated circulatory responses to submaximal exercise. The mechanism of the low Na+K+ pump concentrations in MD is unknown but may relate to deconditioning or to disruption of a close functional relationship between membrane ion transport and glycolysis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical)

Reference30 articles.

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3