Effects of the geometric characteristics of graphene nanoplatelets on the physico-rheological properties of asphalt binder

Author:

Almashaqbeh Hashem Khaled,Rushing Grace,Doyle Jesse,Sengottuvelu Dineshkumar,Majdoub Mohammed,Al-Ostaz Ahmed,Alkhateb Hunain,Nouranian Sasan,Ucak-Astarlioglu Mine G.

Abstract

AbstractWhile graphene nanoplatelets (GnPs) have emerged as promising nano-modifiers of asphalt binder in recent years, much is still unknown in terms of the existing correlations between the physical, chemical, and geometric characteristics of this nanofiller and observed asphalt binder properties. In this work, we investigate the important correlation between the geometric characteristics of GnPs and the rheological properties of the GnP-modified asphalt binder at high temperatures. Our results indicate that, in general, incorporating GnPs with large mean particle diameters (> 14 μm) and thicknesses (> 8 nm) enhances the high-temperature performance of the asphalt binder. The results of the multiple stress creep and recovery tests confirm that including GnPs in asphalt binder can decrease its permanent deformation by 33.2% and enhance its elastic recovery by 53.9%. Phase contrast images obtained by atomic force microscopy further indicate that the presence of GnPs with large mean particle diameters alters the morphology of the asphalt binder, leading to improved temperature stability and less susceptibility to permanent deformation.

Funder

Engineer Research and Development Center

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3